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Abstract

Atrial fibrillation (AF) is a common heart rhythm disor-
der associated with elevated health risks. This study uses
regression models to identify heart tissue regions linked to
AF. We examined the frequency characteristics of atrial ar-
eas employing an elastic net regression (ENR) technique
to pinpoint significant frequency contributions, creating
three-dimensional (3D) maps illustrating the likelihood
of arrhythmia origins. We evaluated the effectiveness of
our method by applying it to both two-dimensional (2D)
and 3D AF simulations and comparing the results with
those obtained using least-squares (LS) algorithms. The
simulations successfully identified stable rotor and wave-
break regions, though some harmonic frequencies were not
captured. We observed defined regional maps in normal
atrial tissue, with notable harmonics occurring at 5.9 Hz
in the left atrium. The right atrium displayed a smaller
rotor region with some missed harmonic frequencies. In
fibrotic left atrial substrates, harmonics at 7.8 Hz were
consistently detected. Using multi-component domains al-
lowed for a comprehensive analysis, and different estima-
tion methods produced comparable results, facilitating the
localization of spatial regions containing AF sources de-
spite a moderate loss of harmonic frequencies.

1. Introduction

Cardiovascular diseases are the leading cause of global
mortality, accounting for approximately 17.7 million
deaths in 2015, which represents nearly 31% of all
recorded fatalities worldwide. This group of diseases in-
cludes cardiovascular ischemia, arrhythmias, aneurysms,
and heart failure. Atrial fibrillation (AF) is a prevalent
arrhythmia affecting about 1-2% of the global population
[1]. AF is classified as a supraventricular tachyarrhythmia
characterized by abnormal contractions originating in the
atria, resulting in a faster-than-usual sinus rhythm. The

treatment options for AF include pharmaceutical remedies
and surgical interventions. Ablation is recommended as a
secondary treatment if the pharmaceutical approach fails
to produce the desired outcomes. Ablation involves using
energy to eliminate or destroy the abnormal cardiac tissue
responsible for causing AF. Despite several proposed theo-
ries, the exact cause of AF remains unknown. One theory,
known as the rotor theory [2], suggests that AF originates
from spiral-shaped re-entries called rotors. These rotors
occur when an electrical impulse re-enters an unintended
location within the heart, contributing to the development
of tachyarrhythmias.

Various computational mapping analysis tools have
been developed to visualize the cardiac electrical activation
and identify the rotors sustaining fibrillation. Once these
rotors are identified, clinicians can ablate to eliminate AF.
Spatial frequency characterization maps have been utilized
in AF analysis to visualize the cardiac electrical activity.
This approach helps identify the specific area requiring ab-
lation [3, 4]. Frequency characterization involves analyz-
ing the spectral content of the signals. Spectral analysis
is preferred over temporal analysis due to the presence of
regularity and patterns in AF, as opposed to the low level
of organization observed in temporal analysis [5]. Spatial
characterization involves examining the location and dis-
tribution of signals. In the context of AF, spatial frequency
characterization is employed to understand its spatial dis-
tribution and frequency characteristics.

The current study focuses on domain segmentation,
which entails identifying and delineating specific areas as-
sociated with the AF organization. Relevant domains of
interest include the rotor and wavebreak domains, which
exhibit different frequencies than the contacting rotor.

The article is structured as follows: Section 2 compre-
hensively explains the materials used, encompassing simu-
lations and real two- and three-dimensional signals. It also
outlines the analysis methods employed, such as Fourier
Organizational Analysis (FOA) and elastic net regression
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Figure 1. Rotor regions for each presented case: (a) Optical map of rat ventricular myocardium; (b) 2D simulation
depicting a rotor; (c) 3D simulation exhibiting fibrosis and an AF focus in the left atrium.

(ENR). Section 3 presents the tests conducted using simu-
lated AF data and real cases to evaluate the various estima-
tors discussed earlier. Finally, Section 4 summarizes the
main results, contributions, and potential future research
directions.

2. Materials and Methods

This section provides an overview of the dataset, includ-
ing real 2D signals and 2D/3D simulations. It also intro-
duces the signal model used for determining significant
spectral frequencies and explains the role of probability
maps in identifying distinct regions in cardiac tissue.

Datasets. First, we used a collection of data comprising
real 2D signals, 2D simulations, and 3D simulations. The
real 2D signals, shown in Figure 1(a), were obtained using
optical mapping techniques. These signals were acquired
from a study investigating the role of the hERG potassium
channel in generating cardiac arrhythmias in neonatal rat
ventricular myocardial cells [6]. The sampling frequency
varies, with one case recorded at 50 Hz and the others at
33 Hz. Each case consists of 6400 data points, but the
low sampling rate poses challenges for video analysis due
to the moderate resolution. Second, a 2D simulation was
conducted, as depicted in Figure 1(b), to test the hypothe-
sis that highly periodic waves originating from AF sources
in or near the posterior left atrium result in increased frag-
mented activity in neighboring regions [7]. The simula-
tions were performed at a sampling frequency of 1 kHz,
and each simulation comprises 2048 data points. Finally, a
3D simulation was included, shown in Figure 1(c), as part
of a thesis aimed at assessing the non-invasive estimation
of dominant epicardial regions with high-frequency char-
acteristics during AF [8]. The simulations were conducted
with a sampling frequency of 500 Hz, and each simulation
consisted of 10,000 data points. The case used in this sim-
ulation involves the presence of fibrosis alongside an AF
focus in the left atrium.

Signal Model and Domain Maps. Concerning the sig-
nal model, we proposed a method for determining the most
significant spectral frequencies according to the FOA pre-
viously proposed for ECG signals. This model aims to

identify different regions in the cardiac tissue in terms of
different spectral contents and organization. The spec-
tral regions are represented using spatial probability maps,
which assist in quantifying the presence of each domain.

As detailed in [9], the FOA signal model for a cardiac
signal s(t) is given by projecting the measured signal onto
the following signal model:

ŝ(t| f0) =
K

∑
k=1,+,−

Akcos
(

2πk f (+,−)
0 +φk

)
(1)

where Ak,φk denote the amplitude and acrophases or the
harmonic components of fundamental frequency f0, and
the notation (+,−) indicates that similar terms are in-
cluded for fluctuations in f0 +∆ f and in f0 −∆ f , respec-
tively (see reference for details). Note that the estimation
is conditional to choosing an adequate fundamental fre-
quency f0.

If we assume that different fundamental frequencies can
be associated with different underlying activation patterns
in the cardiac substrate, we can assume the cardiac signal
consists of the contributions of those patterns, this is,

s(t)≃ ŝ(t) =
Q

∑
q=1

ŝ
(

t| f (q)0

)
(2)

We can obtain the set of amplitudes and phases using
Least Squares Spectral Analysis (LSSA) by applying LS
to a signal model in a grid of frequencies. LSSA is a form
of spectral analysis that fits a model to the signal using
linear regression, and it uses amplitude and phase values
at each frequency in the grid. However, the approach de-
scribed in this article deviates from conventional LSSA by
using a frequency selection strategy instead of a predefined
frequency range. The selected frequencies, their harmon-
ics, and nearby fluctuations are chosen based on specific
criteria and regions of interest within the signal. The LS
method cannot always deal with limited observations or
situations where the number of samples is comparable with
the number of free parameters of the model.

To address stability concerns, penalized linear regres-
sion techniques, such as ridge regression (L2 penalty) and

Page 2



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Frequency maps computed using LS and ENR methods across various cases. LS and ENR frequency maps
are presented in (a) and (b) for the optical mapping case and in (c) and (d) for the planar cardiac tissue simulation case.
The upper panel of (e) and (f) represents the signal estimation for selected frequencies in blue and orange, the signal for
remaining frequencies in yellow, the combined estimated signal in purple, and the original signal in green, applicable
to both LS and ENR methods. The lower panel of (e) and (f) showcases residuals for the estimated signal of selected
frequencies in blue and orange, residuals computed with the remaining frequencies in yellow, and residuals for the estimated
signal created by combining the selected frequencies. Finally, (g) and (h) display the frequency maps for 3D fibrotic atria
simulation registration computed by LS and ENR, respectively.

LASSO (L1 penalty), can be used. Ridge regression re-
duces coefficient magnitudes, while LASSO allows for
variable selection by shrinking certain coefficients to zero.
ENR combines both L1 and L2 penalties, offering a bal-
ance between variable selection and coefficient regulariza-
tion, and this method solves an optimization problem to
determine the coefficients.

For a set of signals measured in different spatial loca-
tions at a given cardiac surface S, this is, r̄i ∈ r̄S, this data

model is estimated in each spatial location, i.e.,

s(t, r̄S) = ŝ(t, r̄S)+e(t, r̄S) =
Q

∑
q=1

ŝ(t| f (q)0 , r̄S)+e(t, r̄S) (3)

For yielding probability maps, we can take energy ratios at
each location and then,

p( f (q)0 , r̄S) =
∥ŝ(t| f (q)0 , r̄S)∥2

∥s(t, r̄S)∥2 (4)

where p is the normalized power contributed by dominant
frequency f q

0 as a function of surface location r̄S.
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3. Experiments and Results

The experimental procedure can be outlined as follows:
Initially, a thorough examination of the signals was con-
ducted to identify specific regions of interest, such as ro-
tors or wavebreaks. Subsequently, the frequencies to be
analyzed were manually chosen based on the signal spec-
trum. Finally, the probability maps and reconstruction er-
rors were computed. Figure 2 shows a compendium of
results. In the simulated data, the probability maps exhib-
ited well-defined spatial distributions, with smooth tran-
sitions in the interface, and the core showed a different
distribution from both substrate regions. The optical map-
ping recordings also showed well-defined spatial regions,
although with more spatial with-in region fluctuations. Fi-
nally, the surface simulation showed connected and com-
pact regions in the reentry and surroundings and outside it.
In the optical mapping and the simulations, ENR method
presented less spatial blurring and fluctuations than the LS
estimator.

4. Conclusions

The generalization of FOA method to a spatial diversity
of signals can provide compact domains. ENR method
can yield better solutions in terms of in-domain blurring.
These results can be advanced in order to support clini-
cians in understanding AF mechanisms and establishing
ablation targets.
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